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Abstract 

Abstract: Infrastructure industries over a period of time become specialized in execution of different infrastructure projects viz. 

Highways, Railways, Aviation, Power Generation, Transmissions, Tunnels, Dams, Buildings and other mega projects. 

Organizations traditionally segregate resources (machineries, tools and plants) into centralized functional divisions as mentioned 

above. This organizational model is structured based on the fact of specific nature of jobs performed with a view of higher 

quality of work and efficiency. Since the human resources employed to these divisions do perform their specific jobs and can 

contribute to higher efficiency because of job specialization, but same is not the case with mechanical resources i.e. machineries, 

tools and plants which are dedicated to specific divisions, since mechanical resources perform similar kind of jobs irrespective of 

the divisions under which they are deployed. A question of whether to become more centralized to achieve economies of scale or 

more decentralized to achieve economies of focus always arises. Using Queuing Theory and Simulation models, we examine the 

service and work load characteristics to determine the conditions where a centralized model is more efficient and conversely 

where a decentralized model is more efficient. The result from the model measures the trade-offs between economies of scale 

and economies of focus from which administrative guidelines are derived. 

Index Terms – Infrastructure Industries, Mechanical Resources, Resource Pooling, Queuing Theory, Simulation Models 

I. INTRODUCTION: 

Infrastructure industries are under mounting pressure to both improve the quality of work and decrease the cost by becoming 

more efficient. Efficiently organizing the execution of work is one way to decrease cost and improve performance. In the 

department this is achieved by aggregating the different type of work into general divisions thereby gaining efficiencies through 

economies of scale. At the same time some divisions are becoming more specialized and offer a limited range of work aiming to 

breed competence and improve execution of work (Leung 2000). Such strategies aim to improve performance through 

economies of focus. 

At the organizational level similar strategies to exploit focus are being considered (Tiwari and Heese 2009; Schneider et 

al. 2008). Rather than organizing mechanical resources around all the divisions at organizational level i.e. pooled mechanical 

resources, the mechanical resources are dedicated to individual divisions thereby becoming more focussed to work of parent 

division (Wickramasinghe 2005; Vanberkel et al. 2010; Langabeer and Ozcan 2009; Mc Laughlin et al. 1995; Hyer et al. 2009; 

Wolstenholme 1999; Huckman and Zineer 2008). In this paper we examine the service and work load characteristics of different 

divisions at organizational level to determine the conditions where dedicated mechanical resources are more efficient and 

conversely where a common mechanical resources pool is more efficient.  
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We derive an analytic approximation measuring economy of scale losses associated with dedicated mechanical 

resources. This approximate along with simulations of typical divisional environments provide the insight from which we 

develop general management guidelines. The model relies only on typically available data and can easily be used to analyse 

specific work load environment of different divisions. 

II. THE POOLING PRINCIPLE: 

In this section we summarize the pooling principle (Cattani and Schmidt 2005) as pooling of work load requirement along with 

pooling of mechanical resources used to fill those requirements in order to yield operational improvements. This implies that a 

centralized division that serves all the different divisions at organizational level may achieve higher percentage utilization of 

resources than a number of different divisions with dedicated mechanical resources employed with in that division focussing on 

a limited work load.  

The intuition for this principle is as follows. Consider the situation in a dedicated mechanical resource division under an 

un-pooled setting, when work is available for a machine due to machine  being busy doing other job whereas a similar machine 

belonging to other division in the same organization is idle due to no work load available for that machine in that division. Had 

the mechanical resources been pooled i.e. centralized to be able to serve work load of all the divisions, the waiting work load of 

first division could have been served by the idle machine of other division in the same organization and thus experience no 

waiting time. The gain in the efficiency is a form of Economy of scale. 

Statistically, the advantage of pooling is credited to the reduction in variability due to the portfolio effect (Hopp and 

Spearman 2001). This is easily demonstrated for cases where the characteristics of the un-pooled mechanical resources are 

identical (Joustra et al. 2010; van Dijk 2000; van Dijk and van der Sluis 2009; Ata and van Mieghem 2009). However pooling is 

not always beneficial. There may be situations where the pooling of workloads actually adds variability to the system thus 

offsetting any efficiency gains (van Dijk and van der Sluis 2004). Furthermore when the target performances of work type differ 

it may be more efficient to use dedicated capacity (Joustra et al. 2010; Blake et al. 1996). And finally in the pooled case all 

mechanical resources must be able to accommodate all type of work load requirements. 

It is recommended by researches to limit the range of services they offer in order to reduce complexity and allow the 

departments to concentrate on doing fewer things more efficiently. Focus, simplicity and repetition in manufacturing breeds 

competence (Skinner 1985; Hyer et al. 2009).  

It is clear that pooling is offered as a potential method to improve a system’s performance without any additional 

resource (Hyer et al. 2009; Kremitske and West 1997; Newman 1997). Many researchers have considered whether to pool or not 

to pool the resources. Researchers considered stations in a Jackson network of queues and encourages practitioners to take care 

when making pooling decisions as the effect can be unbound (Mandelbaum and Reiman 1998). An approximation for M/G/s 

queuing systems to compare various splits of pooled system has been considered (Whitt 1999).  

Motivation behind this paper is drawn by a case study (Vanberkel et al. 2010) which was completed at the Netherlands 

Cancer Institute – Antoni van Leeuwenhoek Hospital (NKI-AVL). The hospital considers the use of focussed factories to treat 

patients with similar diagnoses. From a patient satisfaction perspective this set up is preferred, however, hospital managers want 

to know whether additional resources are required to compensate for any losses caused by un-pooling the functional 

departments. Using a simulation approach, the case study offered a methodology for determining resource requirements in 

focussed factories. This allowed the hospital to compare the performance of existing functional departments with focussed 

factory proposals.  

III. MODEL: 

A discrete time slotted queuing model is used to evaluate the trade-offs between economy of scale and economy of focus. More 

specifically the access time for a centralized division serving all type of work loads of all individual division of the organization 

is compared to the access time of decentralized individual divisions focussing on work load of that individual division only.  

Generally speaking the decentralized method results in longer access time due to the loss in economy of scale. The method 

quantifies this loss and computes the improvement in service time required in the decentralized divisions in order to achieve the 

equivalent access time as in the centralized division. This improved service time represents the amount of improvement due to 

focus necessary to offset the losses of economy of scale. 

We describe the queuing model using language from any division of any organization involved in infrastructure 

projects. For example, requirements for machines for a work, placed by work in charge are considered as new arrivals, period of 

working by that machine is the service time, number of machines reflects the number of servers and the time a job must wait for 

a machine allotment, is the waiting time in the queue.  
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 Following notations are used in this paper- 

λ = average requirement of no. of jobs (Work load) per annum 

D = Average time for completion of a work or work length in days 

V =  variance of the work length or period 

C = coefficient of variance for the work length or period = √ (V/D²) 

M = No. of machines 

ρ = utilization of machines 

t = working hours per day 

W = expected waiting time in days 

A subscript “XY” corresponds to the pooled case and a subscript “X” or “Y” correspond to the         un-pooled case for 

division “X” or division “Y” respectively.  

The schemes of the pooled and un-pooled system are shown in the following figures.   

III.I Un-pooled System – X 

 Figure – 1 Un-pooled System - X  

 

 

 

 

 

 

III.II Un-pooled System – Y 

 Figure – 2 Un-pooled System - Y 
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III.III Pooled System - XY 

 Figure – 3 Pooled System - XY 

 

 

 

 

 

 

 

 

When combined, the parameters of the un-pooled system must equal the parameters of the pooled system. The 

parameters for the two divisions describe the division mix. How the division mix parameters in the un-pooled system relate to 

the parameters in the pooled system is described below. These division rules imply that no additional resources become available 

in the un-pooled setting and that divisions are strictly divided into one or the other group. 

MXY = MX + MY    (1) 

λXY = λX + λY     (2) 

DXY = qDX + (1-q)DY    (3) 

VXY = q(VX + D2
X) + (1-q)(VY + D2

Y) – D2
XY (4) 

where q = λX/ λXY 

Initially the waiting time in three queuing systems depicted in figure 1 are evaluated separately. The characteristics of 

the three systems are the same and as such the same model is used to evaluate them (the input parameters are changed to reflect 

the pooled and un-pooled systems). The model is described in the following subsections where the subscripts “X" and “Y” and 

“XY” are left out for clarity. 

IV. MODELLING ARRIVALS AND SERVICES: 

The mean (D) and variance (V) of work length in days is readily available in most divisions. Relying only on these data, we use 

renewal theory approximations to estimate the number of jobs completed during one year. We assume that D is average time for 

completion of a work or work length in days and that D << t. N (t) is defined as the number work or jobs completed in one 

division between [0, t]. Under these assumptions, from renewal theory (Tijms 2003) we find 

E [N (t)] ≈ 
𝑡

𝐷
+  

1

2
(𝐶2 – 1)     (5) 

Let M be the number of machines, Ni (t) the number of jobs completed by machine0 i=1,2….,M. We assume that Ni(t)s 

are independent and let S be the total number of completed jobs per division year given a division has M number of machines. 

Then  

S = ∑ Ni(t)𝑀
𝑖=1        E[S] ≈ ME[N(t)] ≈ 

𝑀𝑡

𝐷
+ 

𝑀

2
(𝐶2-1)  (6) 

Renewal theory approximation implies that E[s] increases as C increases. Although perhaps counter intuitive, this 

means that as the variance in the division increases, so too do the number completed jobs per annum. 

Let VN(t) and Vs be the variance of N(t) and S respectively. Then the two moment renewal theory (Tijms 2003) 

approximation for VN(t) and Vs is as follows 

VN(t)  ≈ 
𝑉

2
𝑡

𝐷3 =  
𝐶

2
𝑡

𝐷
       (7) 

VS  ≈ MVN(t) = 
𝑀𝐶

2
𝑡

𝐷
       (8) 

Waiting line Arrival Busy resources Departure 

λXY WXY 

DXY VXY MXY

Y 
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Equations (5), (6), (7) and (8) are based on the assumptions D << t.  

In our model we assume that arrival process is Poisson. Let A be the arrival of work load per annum and VA and CA  be 

the variance and coefficient of variance of A respectively. Since A is distributed according to Poisson (λ) it follows that E[A] = 

λ, VA = λ and CA = 1/λ. 

V. DIVISION LOAD: 

Work load in a division is measured by utilization of its machines. The standard measure of machine utilization (ρ) is computed 

by ρ = λ/(ME[N(t)]). Using (6) we approximate ρ as follows 

ρ ≈ 
λ

𝑀𝑡

𝐷
+ 

𝑀

2
(C2−1)

          =     
λD

𝑀𝑡
  

1

1+  
𝐷

2𝑡
(C2−1) 

 

=  
λD

𝑀𝑡
+

λD

𝑀𝑡
{∑ (−1)𝑖 (∞

𝑖=1
𝐷

2𝑡
(C2 − 1))i  }   (9) 

Where the last equality holds provided |D/(2t)(C2-1)| < 1, which is true in our cases since D<<t. The second term in the 

last expression of (9) is of the order D/t and since we assume that D<<t, it follows that it is small relative to the first term. From 

this observation we introduce ρ0 as an estimate of ρ and define it as follows  

ρ0 =   
λD

𝑀𝑡
                                                                      (10) 

In our simulation experiments we keep ρ0 fixed for each setup. Because of the correction term in equation (9), actual ρ  

changes slightly depending on the patient mix parameters. For example if      λX/ λXY changes while CX and CY remains constant, 

then CXY must change according to equation (4). This consequently causes slight changes in E[S] and in turn in ρ. 

VI. WAITING TIME: 

With these input parameters the expected queue length is computed using Lindley’s Recursion (Cohen 1982). Consider 

subsequent years 1, 2,….., and let Ln be the queue length at the beginning of the year n. further let An be the number of arrivals 

of jobs in year n, and Sn the number of jobs that can possibly be completed in year n. We assume that An and Sn, n>1 are 

independent and distributed as described above. The number of appointment requests in year n is then Ln + An, and the dynamics 

of the queue length process is given by 

Ln+1 = (Ln + An –Sn) + ; n > 1    (11) 

Where a+ = a if a ≥ 0 and a+ = 0 otherwise. 

 If n → ∞ then the expectation of Ln converges to its equivalent value L (Cohen 1982). 

To compute the expected waiting time W we use Little’s Law (W = L/λ). In general, equation (11) is hard to solve 

analytically. A variety of techniques, such as Wiener-Hopf factorization, have been developed but they usually lead to explicit 

solutions only in special cases. In the simulation experiments we solve (11) numerically. 

The average queue length (L) in our slotted queuing model is analogous to the average waiting time of a GI/GI/1 queue 

because both are measured by Lindley’s Recursion. The waiting time of a GI/GI/1 queue can be approximated with Allen-

Cunneen approximation (Allen 1990) thus leading to an approximation for L in our slotted model. Using (6) and (8) and the 

assumption that D<<t, we write the approximation formula as 

L ≈ λ 
ρ

1−ρ
   

1

2
[𝐶𝑆

2 + (1/ λ)2] = λ 
ρ

2(1−ρ)
 [

1

λ 
 + 

𝑀C2t

𝐷
 

1

M2(
t

D
+ 

1

2
 (C2−1))2

 ] 

 

≈ 
ρ

2(1−ρ)
 (1 +  

C2

ρ0
 )     (12) 

Using Little’s law and (12) we approximate the expected waiting by 

W ≈ 
ρ

2(1−ρ)λ
 (1 +  

C2

ρ0
 )     (13) 
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VII. REQUIRED CHANGE IN SERVICE TIME: 

To compare the performance of the pooled and un-pooled systems, W is computed for the three queuing systems depicted in 

figure 1. The objective of the model is to determine a new appointment length D’X required to make WX = WXY . As a standard 

measure we define ZX as the proportional difference between DX and D’X (likewise for D’Y and ZY ). Ignoring the subscripts “X” 

and “Y” we formally define Z as follows 

Z = 
D’

𝐷
 -1       (14) 

Z essentially measures the Economy of Focus needed to make the access time in the pooled and un-pooled systems 

equal. Z can be both negative and positive. When Z is negative it represents the amount the work length must decrease in order 

to overcome any economy of scale losses resulting from un-pooling. When Z is positive it indicates that the work length can 

increase and still maintain the same service level as in the pooled system. Although practically less relevant, the positive Z value 

does help illustrate how the trade-off between economy of scale and economy of focus is influenced by the distribution of rooms. 

Using our estimation (13) for W, we show how the Z values can also be estimated. First we assume ρ0 ≈ ρ and define 

ρ’
0 as the load in the un-pooled division “X" with work length D’

X. 

ρ’
0 = 

λ𝑋 𝐷𝑋
′

𝑀𝑋𝑡
 

next we set the waiting time approximations (13) for the pooled and un pooled system “X" equal to each other. 

ρ0
′

2(1−ρ’0)λ𝑋 
 (1 +

𝐶𝑋
2

ρ0
′  ) =  

ρ0

2(1−ρ0)λ𝑋𝑌  
 (1 +

𝐶𝑋𝑌
2

ρ0
 )  (15) 

We also assume that the machines are divided between the pooled and un-pooled divisions in such a way that the 

division load remains the same. From this it follows 

ρ0  = 
𝐷𝑋𝑌

𝑀𝑋𝑌

λ𝑋𝑌

𝑡
 ≈  

𝐷𝑋

𝑀𝑋

λ𝑋

𝑡
 

finally, with algebra and by ignoring second order and higher terms of (1 − ρ0) we solve (15) for D’X/DX to obtain 

ZX  = 
𝐷𝑋

′

𝐷𝑋
−  1 ≈ (1 −

1+ 𝐶𝑋
2

1+ 𝐶𝑋𝑌
2  

λ𝑋𝑌

λ𝑋
 ) (1 − ρ0 )   (16) 

Similarly (16) can be re written to obtain ZY = D’Y/BY -1 . From 4 it can be shown that either ZX or ZY in (16) is 

negative. 

We note that while deriving formula (16) we made a number of simplifying assumptions and ignored second order and 

higher terms of ( 1- ρ0). Thus one can expect that (16) gives an accurate approximation for ZX only in some special cases, e.g., 

when ρ0 is close to 1. The main goal of deriving this formula however is to reveal the main parameters that influence ZX and to 

identify the importance of these parameters in reasonable division settings. To this end, our calculations show that ρ0, λX/λXY and 

(1+C2
X)/ (1+C2

XY) are the most influential factors. Furthermore, (16) also indicates which factor can be ignored. The absences of 

MXY and DXY implies that their influence is minimal. 

Table – 1 Relative importance of factors influencing ZX according to (16) 

Sr. 

No. 
Division description ρ0 𝛌𝐗/𝛌𝐗𝐘 

(1+C2
X)/ 

(1+C2
XY) 

ZX 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Heavy work-load division, λX>> λY, VX<<VY 

Heavy work-load division, λX>> λY, VX = VY 

Heavy work-load division, λX>> λY, VX>>VY 

Heavy work-load division, λX<< λY, VX<<VY 

Heavy work-load division, λX<< λY, VX=VY 

Heavy work-load division, λX<< λY, VX>>VY 

Normal work-load division, λX>> λY, VX<<VY 

Normal work-load division, λX>> λY, VX = VY 

Normal work-load division, λX>> λY, VX>>VY 

Normal work-load division, λX<< λY, VX<<VY 

Normal work-load division, λX<< λY, VX=VY 

Normal work-load division, λX<< λY, VX>>VY 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.70 

0.70 

0.70 

0.70 

0.70 

0.70 

0.70 

0.70 

0.70 

0.30 

0.30 

0.30 

0.70 

0.70 

0.70 

0.30 

0.30 

0.30 

0.32 

1.00 

1.36 

0.17 

1.00 

2.58 

0.32 

1.00 

1.36 

0.17 

1.00 

2.58 

0.00 

-0.01 

-0.01 

0.00 

-0.03 

-0.08 

0.16 

-0.13 

-0.29 

0.13 

-0.70 

-2.28 
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Table 2: Percentage by which ZX is overestimated by (16) 

𝛌𝐗/𝛌𝐗𝐘 ρ0 = 0.79 ρ0 = 0.88 ρ0 = 0.97 

0.3 

0.4 

0.5 

0.6 

0.7 

40.60 % 

22.10 % 

13.10 % 

10.40 % 

5.20 % 

18.10 % 

9.80 % 

6.30 % 

3.10 % 

1.10 % 

4.10 % 

1.50 % 

1.00 % 

0.00 % 

0.00 % 

 

To illustrate the relative importance of terms ρ0, λX/λXY and (1+C2
X)/ (1+C2

XY) in (16) , consider the following typical 

ranges for each of them: ρ0 ∈ [0.7, 0.99]; λX/λXY ∈ [0.3, 0.7], as having values outside of this range implies a very small un 

pooled department which would be impractical, C2
X , C2

XY ∈ [0.5, 3]. Note also that (1+C2
X)/ (1+C2

XY) depends on λX/λXY 

through (4). Table 1 shows twelve scenarios reflecting the border values of three influential factors. We clearly observe that 

when ρ0 is large it dominates ZX and appears to be the most influential factor. It is also observable that busier the division is, 

smaller the loss in economy of scale. This is consistent with (7), which states that “pooling is not so much about pooling capacity 

but about pooling idleness” implying that un-pooled systems with less idleness can expect less economy of scale gains when 

pooled. Next consider that a high value of λX/λXY forces (1+C2
X)/ (1+C2

XY) close to 1 diminishing the effect of (1+C2
X)/ 

(1+C2
XY) on ZX. However, for the corresponding smaller group, this factor becomes increasingly important (see rows 9 and 10 

from table 1).  

Finally table 2 illustrates the accuracy of approximation (16) by showing the per cent by which (16) overestimates ZX 

compared with simulated results. Here the simulation results are obtained as described below. As expected, (16) is quite accurate 

for larger values of ρ0 and λX/λXY, while for other cases the approximation is poor. Thus in the next section we obtain an accurate 

approximation for ZX in a wide range of realistic scenarios, using computer simulations. 

VIII. SIMULATION EXPERIMENTS: 

To gain further perspective on the factors that influence the loss in economy of scale and to validate the inference drawn from 

(16) a number of numeric experiments are completed. 

IX. SIMULATION DESCRIPTION: 

IX.I Service rate distribution:  We model the length of the job as random variables with phase type distributions (Tijms 

2003; Fackrell 2009), where expectation and variance are fitted in the data. We opt for a two moment approximation, instead of 

a more involved distribution fit (e.g. empirical distribution), because mean and variance data for job lengths are typically 

available. As such it is easily transferrable to other settings and the likelihood of implementation is increased. 

If the job length duration has C ≤ 1, then the job length is assumed to follow an Erlang (k, µ) distribution where µ = k/D 

and k is the best integer solution to k = D2/V. The completed jobs per annum is computed by considering that an Erlang (k, µ) 

distribution is equal to a sum of k independent exponential random variables (phases) with parameter µ and the number of such 

phases completed in t time units is Poisson with mean µt. it follows that N(t) = [Poisson (µt)/k]. if       C >1, the job length is 

assumed to follow a hyper exponential phase type distribution. The job length is distributed according to p Expo (µ1) + (1-p) 

Expo (µ2) and the total number of complete jobs per annum is computed by Monte Carlo simulation where  

p = 
1

2
 (1 + √

𝐶2−1

𝐶2+1
 ), µ1 = 

2𝑝

𝐷
 , µ2 = 

2(1−𝑝)

𝐷
 

IX.II Job Mix: The job mix is described by two factors: λX/λXY and DX/DXY. The values for  λX/λXY are 0.3, 0.4, 0.5, 0.6 and 

0.7. This represents the range of situations where job group X is 70% , group Y is 30% of the pooled group. The values for 

DX/DXY are 0.5, 1, 1.5 and 2 representing situations where the job length for group X is half that of the pooled group, and up to 

and including the case, where it is two and half time longer. The job length of group Y can be computed easily from (3). 

IX.III Machine allotment: Initially we do not impose restrictions on how to divide the machines between the two un-pooled 

systems as the optimal divisions follows from the model. To keep the experiments more manageable, results are limited to only 

“reasonable “machine allotments where |ZX| and |ZY| ≤ 0.25. Practically this means we excluded situations where more than a 

25% change in job length is required to make the performance of the un-pooled system equal the performance of the pooled 

system. 
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X. RESULTS: 

The results in this section are organized as follows. Initially a base division is defined and analyzed for the various job mixes and 

machine allotments. Next the parameters for the pooled division are changed representing different division environments e.g. 

busy division, smaller division etc. The results for these different environments are compared to the base division. The scenarios 

considered in this section (as listed in table 3) are meant to encompass a wide range of typical division environments. The bold 

values of table 3 indicate the parameters which are changed relative to the base division. 

Table 3: Parameters for different division environment scenarios 

Division Environment MXY DXY 𝛌𝐗𝐘 ρ0 CX,CY 

Normal work-load Division 

Heavy work-load Division 

Smaller Division 

Shorter Job Length 

Higher Job Length Variability 

Different Coefficient of Variance 

20 

20 

10 

20 

20 

20 

30 

30 

30 

15 

30 

30 

282 

310 

141 

564 

282 

282 

0.88 

0.97 

0.88 

0.88 

0.88 

0.88 

0.5,0.5 

0.5,0.5 

0.5,0.5 

0.5,0.5 

2.0,2.0 

2.0,0.5 

 

Initial results for administrators may come from the division environment that most closely reflects their division’s 

make up. For more specific results, the described simulation (which only requires the mean and variance data) should be used. 

XI. BASE DIVISION:  

The parameters and results for the initial base division environment are shown in table 4. The job mix factors λX/λXY and DX/DXY 

represent the rows and columns respectively. In each table cell multiple machine allotment (represented by the number in 

parenthesis) and the corresponding Z values are given. The results are in the following format: ZX (MX), ZY (MY). This 

represents the amount of change (ZX) in DX necessary, when the un-pooled division is allotted MX machines (likewise for job 

group Y). As an example consider when λX/λXY = 0.3 and DX/DXY = 0.5. The values in the corresponding cell is “-10% (3), -4% 

(17)”. The result represents the case where 3 machines are allotted to group X job and 17 to group Y job, as noted by the 

numbers on parenthesis. In this case for the un-pooled systems to perform equally as well as the pooled systems, group X and Y 

are required to change their job length by ZX = -10% and ZY = -4% respectively. The blank cells in the table are the consequence 

of excluding machine divisions which result in a |Z| value greater than 25%. From Table 4 and as identified in (16), Z depends 

on the ratio λX/λXY. When group X is smaller than group Y (i.e. λX/λXY < 0.5), group X requires less machine but a greater 

decrease in service time. The counter situation (i.e. λX/λXY > 0.5) holds for group Y. It follows that larger Job groups retain 

economy of scale and requires less economy of focus to compensate. Furthermore the smallest total loss in economy of scale (i.e. 

ZX + ZY) occurs when the two un-pooled divisions are of the same size. Practically this implies that making a small division to 

serve a small job population is not a good idea. This influence of λX/λXY is observable in all tables in this section. 

Although not identified by (16), from table 4 it appears that Z depends on the ratio DX/DY. This dependency is not 

easily characterised as it appears dependent on λX/λXY. Within the range of values tested, the influence of DX/DY is small relative 

to that of λX/λXY. This is observable in all tables in this section except Table 5 where the factor ρ0 dominates. 

 

 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2021 IJCRT | Volume 9, Issue 3 March 2021 | ISSN: 2320-2882 

IJCRT2103272 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2137 
 

Table 4: Base Division Results (MXY 20, DXY = 30, λXY = 282, CX = CY = 0.5) 

𝛌𝐗/𝛌𝐗𝐘 DX /DXY = 0.5 DX /DXY = 1.0 DX /DXY = 1.5 DX /DXY = 2.0 

 

0.3 

 

 

 

-10%(3), -4%(17) 

 

20%(8), -18%(12) 

5%(7), -11%(13) 

-12%(6), -4%(14) 

10%(11), -21%(9) 

-2%(10), -12%(10) 

-12%(9), -3%(11) 

-22%(8), 8%(12) 

 

-5%(13), -14%(7) 

-12%(12), -2%(8) 

-20%(11), 12%(9) 

0.4 

 

19%(5), -12%(15) 

-7%(4), -5%(16) 

16%(10), -21%(10) 

5%(9), -13%(11) 

-9%(8), -5%(12) 

-20%(7), 5%(13) 

 

0%(13), -15%(7) 

-9%(12), -4%(8) 

-16%(11), 10%(9) 

 

6%(17), -22%(3) 

-2%(16), 6%(4) 

0.5 

17%(6), -12%(14) 

-4%(5), -7%(15) 

4%(11), -16%(9) 

-6%(10), -6%(10) 

-16%(9), 5%(11) 

 

-7%(15), -4%(5) 

-13%(14), 16%(6) 

 

0.6 

15%(7), -15%(13) 

-3%(6), -9%(14) 

-19%(5), -3%(15) 

5%(13), -20%(7) 

-5%(12), -8%(8) 

-13%(11), 5%(9) 

-21%(10), 15%(10) 

-5%(18), -6%(2)  

0.7 

14%(8), -19%(12) 

-2%(7), -13%(13) 

-16%(6), -6%(14) 

 

-4%(14), -11%(6) 

-10%(13), 5%(7) 

-18%(12), 19%(8) 

  

 

The machine allotment which represents the smallest loss in economy of scale occurs when the difference between ρXY, 

ρX and ρY is minimized. For ease of comparison, the results for these proportional machine distributions are bold. For such 

allotments ρ0, XY = ρ0, Y which implies  

λXY

𝑡

𝐷𝑋𝑌

𝑀𝑋𝑌
 = 

λ𝑋

𝑡

𝐷𝑋

𝑀𝑋
 

MX = 
λ𝑋

λXY

𝐷𝑋

𝐷𝑋𝑌
𝑀𝑋𝑌 , MY = MXY - MX   (17) 

 Practically speaking this division represents the most equitable way to divide the machines such that the difference in 

workload for staff in the two un-pooled divisions is minimized. For cases where CX = CY , it also represents the most equitable 

way to divide the machines such that the difference in waiting time for both work load is minimized. The high degree by which 

Z depends on the machine division is observable in all the tables in this section. 

XII. BUSIER DIVISION:  

To determine how ZX and ZY are influenced by how busy a division is, the demand for work is increased to λXY = 310. 

Comparing table 4 with table 5, it is clear that |ZX| + |ZY| is decreasing as the clinic load increases. This means, that the EOS loss 

of un-pooling is smaller for divisions of higher work load. This is consistent with findings from (16). In the remaining scenarios 

ρ0 is kept constant with the Base Case. 

 

 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2021 IJCRT | Volume 9, Issue 3 March 2021 | ISSN: 2320-2882 

IJCRT2103272 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2138 
 

Table 5: Busier Division Results (MXY 20, DXY = 30, λXY = 310, CX = CY = 0.5) 

𝛌𝐗/𝛌𝐗𝐘 DX /DXY = 0.5 DX /DXY = 1.0 DX /DXY = 1.5 DX /DXY = 2.0 

 

0.3 

 

 

 

-4%(3), -3%(17) 

 

15%(7), -9%(13) 

-3%(6), -2%(14) 

-19%(5), 7%(15) 

17%(11), -20%(9) 

7%(10), -11%(10) 

-6%(9), -2%(11) 

-16%(8), 9%(12) 

 

1%(13), -15%(7) 

-8%(12), -3%(8) 

-15%(11), 12%(9) 

0.4 

 

-3%(4), -3%(16) 

11%(9), -10%(11) 

-3%(8), -2%(12) 

-15%(7), 8%(13) 

5%(13), -14%(7) 

-5%(12), -2%(8) 

-13%(11), 12%(9) 

 

2%(16), 6%(4) 

 

0.5 

 

18%(6), -12%(14) 

-3%(5), -6%(15) 

19%(12), -22%(8) 

10%(11), -12%(9) 

-2%(10), -2%(10) 

-12%(9), 9%(11) 

-22%(8), 19%(12) 

 

 

-5%(15), -3%(5) 

-12%(14), 18%(6) 

 

0.6 

16%(7), -13%(13) 

-3%(6), -6%(14) 

-19%(5), 2%(15) 

8%(13), -15%(7) 

-2%(12), -3%(8) 

-10%(11), 11%(9) 

 

-5%(18), -3%(2) 

 

0.7 

14%(8), -15%(12) 

-2%(7), -9%(13) 

-16%(6), -2%(14) 

7%(15), -19%(5) 

-2%(14), -3%(6) 

-9%(13), 14%(7) 

  

 

XIII. SMALLER DIVISION AND DIVISIONS WITH SHORTER JOB LENGTH: 

As expected from (16), the results for the division with fewer machines showed only modest changes in ZX and ZY and are 

therefore excluded from the text. However, it is important to note that in smaller divisions, it is more likely that (17) results in a 

non-integer solution, hence there is discretization effect.  In (16) we assume ρ0, XY = ρ0, X and overlook this influence. The results 

for a division with shorter job lengths found ZX and ZY to also be insensitive to DXY which is again what is expected from (16). 

XIV. HIGHER JOB LENGTH VARIABILITY:  

Results for a division with higher job length variability are available in table 6. Relative to the base case, CX and CY were both 

increased from 0.5 to 2. Contrasting table 4 and table 6 it is clear that |ZX| + |ZY| has increased considerably with CX and CY 

.Although an increase was expected from (16) the extent of the increase is greater than anticipated. This leads to the conclusion 

that changes in CX and CY have a greater impact than (16) indicates. This is most usually illustrated by considering job mix when 

λX/λXY = 0.5 and DX /DXY =1 which represents the case where both job groups have equal service rate and arrival rate 

parameters. Furthermore, the aggregate service rate for the pooled group also have the same parameters, see (3) and (4). As such, 

with this job mix, CXY always equals CX and likewise CY. In the simulation experiment for this job mix, |ZX| increased by 4% 

when CX and CY were increased from 0.5 to 2. Evaluating (16) for the same situations shows no change in |ZX|, illustrating that 

(16) does not fully capture the impact of CX on |ZX|. 

Table 6: Higher Job length Variability Results (MXY 20, DXY = 30, λXY = 282, CX = CY = 2) 

𝛌𝐗/𝛌𝐗𝐘 DX /DXY = 0.5 DX /DXY = 1.0 DX /DXY = 1.5 DX /DXY = 2.0 

0.3 

 

8%(4), -11%(16) 

-22%(3), -5%(17) 

14%(8), -20%(12) 

-4%(7), -13%(13) 

-19%(6), -6%(14) 

 

6%(10), -17%(10) 

-17%(9), -7%(11) 

 

 

-18%(12), -12%(8) 

0.4 

5%(5), -14%(15) 

-18%(4), -8%(16) 

-2%(9), -16%(11) 

-14%(8), -8%(12) 

 

 

-13%(12), -11%(8) 

-21%(11), 3%(9) 

 

16%(16), -17%(4) 

-23%(15), 6%(5) 

 

0.5 

5%(6), -17%(14) 

-15%(5), -11%(15) 

1%(11), -20%(9) 

-10%(10), -10%(10) 

-20%(9), 2%(11) 

 

-11%(15), -15%(5) 

-16%(14), 5%(6) 

 

0.6 

2%(7), -20%(13) 

-14%(6), -14%(14) 

 

-8%(12), -14%(8) 

-16%(11), -3%(9) 

 

-9%(18), -22%(2) 

 

0.7 
-13%(7), -19%(13) 

 
-5%(14), -18%(6) 

-13%(13), -5%(7) 

-20%(12), 13%(8) 
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XV. DIFFERENT COEFFICIENT OF VARIANCE: 

Results for the scenario when CX = 0.5 and CY =2 are shown in Table 7. Relative to the Base Case, ZX decreased and with few 

exceptions, ZY faces almost no changes. 

Table 7: Different Coefficient of Variance Results (MXY 20, DXY = 30, λXY = 282, CX = CY = 2) 

 

 

 

𝛌𝐗/𝛌𝐗𝐘 DX /DXY = 0.5 DX /DXY = 1.0 DX /DXY = 1.5 DX /DXY = 2.0 

0.3 

 

-5%(3), -5%(17) 

 

14%(7), -10%(13) 

-4%(6), -3%(14) 

-20%(5), 6%(15) 

19%(11), -21%(9) 

8%(10), -11%(10) 

-4%(9), -2%(11) 

-14%(8), 9%(12) 

 

5%(13), -15%(7) 

-5%(12), -2%(8) 

-13%(11), 12%(9) 

0.4 

 

-4%(4), -7%(16) 

12%(9), -13%(11) 

-2%(8), -4%(12) 

-14%(7), 6%(13) 

9%(13), -16%(7) 

1%(12), -3%(8) 

-10%(11), 11%(9) 

 

-3%(16), -5%(4) 

-9%(15), 20%(5) 

 

0.5 

20%(6), -16%(14) 

-2%(5), -9%(15) 

-21%(4), -3%(16) 

12%(11), -16%(9) 

-2%(10), -6%(10) 

-10%(9), 6%(11) 

-20%(8), -16%(12) 

 

3%(15), -5%(5) 

-6%(14), 17%(6) 

 

0.6 

17%(7), -20%(13) 

-1%(6), -13%(14) 

-18%(5), -6%(15) 

12%(13), -20%(7) 

3%(12), -8%(8) 

-7%(11), 7%(9) 

-15%(10), 19%(10) 

-11%(17), -17%(3)  

0.7 
1%(7), -19%(13) 

-15%(6), -12%(14) 
5%(14), -12%(6) 

-5%(13), -6%(7) 
  

 

XVI. CONCLUSION: 

From the analytic approximation of Z we conclude that when contemplating dividing a pooled department, administrators should 

consider ρ, λX/λXY, and (1+C2
X)/ (1+C2

XY). The importance of all three of these factors is confirmed by the simulation 

experiments which also identified further factors for consideration. In the simulation experiments we find that ZX and ZY values 

are influenced by CX and CY. ZX and ZY values also appear slightly sensitive to the ratio DX/DY, although characterizing this 

influence is not observable from the results. Furthermore, with the simulation we identified how the division of machines 

between the un-pooled departments is also an important decision factor. Finally the simulation also illustrated the discretization 

effect that occurs in smaller divisions. Both approaches used to quantify the factors impacting the un-pooling decisions 

illustrated that there are numerous considerations necessary and many cannot be considered in isolation. In table 8 we summarize 

these factors. 
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Table 8: Summary of factors effecting economy of scale losses due to Un-Pooling 

Factors Change in ZX General Administrative Guidelines 

Division Load(ρ0) Decreases as ρ0 increases Un Pooling divisions with high work load results in 

less economy of scale losses than divisions under 

lesser work load 

Machine Division Disproportionate splits 

increase |ZX| + |ZY| 

The machine allotment representing the smallest 

loss in economy of scale occurs when the 

difference between ρXY, ρX and ρY is minimized, 

see (17) 

Division Size (MXY) Increases (slightly) as MXY 

decreases. 

Economy of scale losses appears mostly insensitive 

to the size of the division. In smaller division it is 

more difficult to proportionally split different 

machines (server) 

Divisions with short 

work lengths (DXY) 

Mostly insensitive to DXY Economy of scale losses appear to be mostly 

insensitive to the job length 

Divisions with highly 

variable job lengths (CX, 

CY) 

Increases as CX, CY 

increases 

Un pooling work groups with highly variable work 

lengths results in larger economy of scale losses. 

Divisions with different 

coefficient of variance 

for work groups        (CX 

< CY) 

Decreases when CX < CY The job group with the smaller C generally 

experiences a smaller loss in economy of scale as a 

result of un pooling 

Proportional size of each 

group  (λX/λXY) 

Increases as λX/λXY 

decreases 

Smaller job groups experience a greater loss in 

economy of scale as a result of un pooling 

Job length proportion 

(DX / DXY ) 

Mostly insensitive to DX / 

DXY 

Economy of scale losses appear to be mostly 

insensitive to the ratio of work length 

 

XVII. IMPLICATION FOR PRACTICE: 

In general, administrators should consider the following when approaching the decision to un-pool a centralized department. 

Under most circumstances access time to divisions will increase unless the service time in the un-pooled department is deceased, 

assuming that no additional resources are made available. The amount of service time decrease needed to compensate for this 

performance loss depends on the characteristics of the original pooled division and the characteristics of the newly created un-

pooled divisions. The main characteristics to consider are division load (ρ), number of machines (NXY), and variability in job 

length. Table 8 summarizes all factors considered in this paper. 

When looking at the original pooled division consider the following. Divisions under high load require less decrease in 

service time to compensate for un-pooling losses. The number of machines in a division does not greatly influence the needed 

service time change; however in smaller divisions it is more difficult to proportionally divide the machines. 

When deciding how to split the pooled divisions (which consequently define the characteristics of the new un-pooled 

division) consider the following. The smallest required decrease in service time occurs when the difference between the division 

loads in the two un-pooled divisions is minimized. The smaller job group resulting from the split will require a greater decrease 

in service time to compensate for un-pooling losses. Finally, un-pooling job groups with highly variable job lengths also require 

a greater decrease in service time to compensate.  

XVIII. FUTURE RESEARCH: 

The analytic approximation provided initial insight into the influence of the many factors causing losses in economy of scale, 

however since it is an approximation it does not fully account for them. The simulation provided more accurate results for a 

given range of circumstances and the approach is demonstrated to be robust. However due to large number of factors and the 

complex relationships that exists between them, it proved difficult to use simulation to draw stringent general conclusions. 

Further research is required to determine how exactly these factors influence losses of economy of scale related to un pooling. 

With comprehensive descriptions of these relationships, operational researchers can further improve or even optimize the mix of 

the functional and job focussed divisions within an organization. 
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